This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

The Crystal and Molecular Structure of Bis(tribenzylphosphine oxide)dichloro Cobalt(II)

R. H. De Almeida Santos ${ }^{\text {a }}$; Y. Mascarenhas ${ }^{\text {a }}$
${ }^{\text {a }}$ Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica e Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brasil

To cite this Article Santos, R. H. De Almeida and Mascarenhas, Y.(1979) 'The Crystal and Molecular Structure of Bis(tribenzylphosphine oxide)dichloro Cobalt(II)', Journal of Coordination Chemistry, 9: 1, 59-64
To link to this Article: DOI: 10.1080/00958977908073102
URL: http://dx.doi.org/10.1080/00958977908073102

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


SHORT COMMUNICATION The Crystal and Molecular Structure of Bis(tribenzylphosphine oxide)dichloro Cobalt(II) \dagger

R. H. DE ALMEIDA SANTOS and Y. MASCARENHAS
Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica e Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal - 369, 13560 - Sao Carlos, SP, Brasil

(Received May 3, 1977; in final form July 26, 1978)

INTRODUCTION

The crystal and molecular structure of bis(tribenzylphosphine oxide)dichlorocobalt (II) has been undertaken as part of a continuing comparative study of the tribenzyl, dibenzyl phenyl, benzyl diphenyl, and triphenyl phosphine oxide complexes in solution and solid state. ${ }^{1}$ The purpose is the elucidation of the molecular geometry of this complex.

EXPERIMENTAL

The samples were obtained by mixing alcoholic solutions of salt and organic ligand in the proper stoechiometric proportions. The solution was concentrated and cooled in a refrigerator until crystallization. Usually the crystals were well formed blue bipiramids.

Bis(tribenzylphosphine oxide)dichlorocobalt (II) Has the following cell dimensions $\mathrm{a}=15.133(1) \AA$, $\mathrm{b}=13.905(1) \AA, \mathrm{c}=16.492(1) \AA, \alpha=\beta=\gamma=90^{\circ}$, $\mathrm{V}=3954 \AA \AA^{3}$ These were obtained using a Philips automatic diffractometer PW 1100 and refined by least squares calculations. It crystallizes in the orthorhombic system. The following systematic extintions, h 00 for $\mathrm{h}=$ odd, 0 k 0 for $\mathrm{k}=$ odd and 00ℓ for $\ell=$ odd were observed fixing the space group as $\mathrm{P} 2_{1} 2_{1} 2_{1}$. The observed density $=1.29 \mathrm{~g} / \mathrm{cm}^{3}$ (by flotation), calculated density $=1.293 \mathrm{~g} / \mathrm{cm}^{3}$ assuming $\mathrm{Z}=4$ molecules/cell.

The intensities of 2110 independent reflections were recorded using the PW 1100 Philips automatic single crystal diffractometer by courtesy of Philips

Company and their Laboratories in Eindhoven. The radiation was graphite monochromatized Mok α using the $\theta-2 \theta$ scan type with a scan width of 1° and a speed of $0.08^{\circ} / \mathrm{sec}$. Background counts were done on each extreme of the scanning interval taking $1 / 2$ of the scan time on both sides. The intensity of three standard reflections, (141), (230) and (330) were measured each 100 reflections and did not show any appreciable change in intensity during all data collection.

Data Reduction

The data were corrected for the Lp factor and reduced to the corresponding moduli of structure factors. All reflections in which the observed F was greater than three times the value of the corresponding standard deviation ($\sigma(\mathrm{F})$) were considered to be statistically above background. 2085 reflections were classified in this category. As the largest and smallest dimensions of the crystal used in data collection were respectively only of 0.5 and 0.3 mm and $\mu=8.2$ no absorption correction was applied.

Structure Analysis

As we intended to use direct methods, we proceeded to the determination of the scale factor and average temperature factor using the Wilson plot procedure and to the calculation of the normalized structure factors. A program written by R. Shiono ${ }^{2}$ was used.

The program Multan ${ }^{3}$ was used for the phasing of the 470 largest E values ($\mathrm{E}>1.24$). 16 sets of phases were generated; the corresponding E maps were

TABLE I
Non hydrogen atoms thermal and positional parameters of bis(tribenzylphosphine oxide)dichlorocobalt (II) and their estimated standard deviations ${ }^{\text {a }}$

ATO			2	$8(1,1)$	B(2,2)	$B(3,3)$	80	(1,3)	$8(2,3)$
ω	3244	13)	713: (16)	676	692	52	-33(18)	2	56(17)
n	281	32	26	7631	$632($	524	(30)	23)	183
12	53901 (31)	17592(30)	9)	652	627 (20)	603(18)	-33(48)	36)	
C.1	271	275	$7065(32)$	843C	775 (18)		171(50)		225(45)
C.	27365(63)	5982(39)	-2763 (32)		1129(25)	666 (18)	-383(68)	-164(57)	-334 (49)
01	29723(71)	$9277(34$	18:43(71)	8:4 (65)	757(58)	738(57)	56 (115)	136(i20)	128 (135)
02	43118	146	1273(69)	831(56)	38)	696	49(136)	116(245)	8)
C1	18210(121)	$9787(102)$	31320(96)	856	584(81)				6)
$C 2$	19097(116)	18622 (113)	$34008(95)$	737 (112)		516(70)	(215)	2)	24 (235)
$C 3$	193	25766 (119)	2856: (97)	838	9:0(107)	504(95)	236))	$42(225)$
c 4	20:5	33197 (124)	301	30	$725(16)$	916(103)	$212(210)$	(2)	22 (210)
Cs	2803	352	38737(:39)	14	829 (16)	22	(300)	$-168(2: 3)$	
cs	2232:	284	447: $6(109)$	1202 (132)	1392(159)	599	302 (185)		
c)	$2 \mathrm{C}=$	$20453(122)$	119	897	983	548	-89(215)	$162(2: 3)$	-416(235)
co	27715	-55j2(119)	2cesoc:01)	943(15)	855	55	6 (21	$332(233)$)
c9	19.	-931	22156: 93)	$\mathrm{s}=9$	55:	636(84)	-99(215)		
cI:	12 Co	- $2 \leq 6$	26)	771(93)	1055(163)		-388(219)	3) $(:$:	823(215)
c:1	445;	-13912(12)	2)	83	838 (9	100	-568(232)	113(:	509 (2:0)
c12	307	13	31	1092	$851(11 j)$	80	-259 (219)	-116	-6(235)
c:	12:34	13	c)	: 073 [1:0	8:2 (00:	612(105)	0 (250)	-25? $2: 33$	-197(2: ${ }^{\text {(2) }}$
ci4	19927(125)	to	3:9:(:02)	970 (!3)	8it (93)	560(86)	181(218)	2008	90(2i7)
c:s	35334 (122)		33683 (i02)	$929(114)$	$839(115)$	565(83)	-16(270)	-47(:3)	276(215)
C5	4Si36(106)	3753 (12	3336e 99$)$	4 C	763 (100)	\%ob (86)	145 (220)	-17	17(335)
c17	48;76(119)	$5 \cdot($	40:75:05)	639(11)	777(103)	685 (3C0)	$4(236)$	-271(234)	617(215)
c:	56903	-37:\% (125)	35	203(169)	905(121)	019(102)	133(240)	-3	-i 39 (2ji)
c: 9	61739	-457:(130)	32i	710:!	1051	762	626(216)	15	197(219)
C23	59227	-1116(25355(117)	$6!$	$1143(12$	812(102)	503(236)	-282	363 (223)
C2:	50992	2973(124)	262 23 (:13)	769(89)	923(122)	668(106)	5(232)	$4(235)$	122(213)
C22	53	19	-6i63(32)	838	779(81)	522(61)	$302(204)$	-58	-181
c23	49500	25215(-935: (84)	693(625	$632(70)$	-11(210)	64	-ios
c24	40350	28545	-lc3s 5 (82)	(89	99(7	83)	214	-60(230)	231 (22i)
css	37751	37213 (13153(100)	767(10)	759(9:)	928(87)	7(216)	-19(22:)	-12
C7	4318	43732	385	995(113)	73	831(76)	394(198)	76(196)	18(228)
C27	S2121(166)	43	22i	020	605	76	-34(247)	27	4
c2	3scbs (90)	350	102?: (30$)$	262(73	59: (6i)	$680(72)$	-73(222)	295(\%)	381 (1:6)
c:9	57503(105)	26543(92)	8973 (90)	$10: 8$ (19	760 8	657	151(232)	66 (2:3)	138 (137)
cio	58:09(99)	25910(92)	18:9: (59)	874(97)	639(56)	695 (106)	-217 (210)	-62(233)	64 (230)
c3:	65643	23293 (10)	22:54(103)	951 (1:	869(8)	103)	(214)	-596(:S	-293(21.)
cis	65735(13	237	3078 (103	1550 (15	956 (9	883	-83(24	1036	176(235)
63	58318(160)	24432:126)	3531	2126	107	710(103)	-383(215)	-663i	158(2E)
c3i	31347	26851(124)	312	1331 (13)	1294(136)	97)	-365(232)	-100(2:7)	1(21)
C35	ccs	27433(108)	233:3:02)	$1100(8)$	839(66)	787(77)	87 (219)	-301(:37)	$75(185)$
c36	61571 (93)	957e (89)	$4539(78)$	746 (22)	$763(10)$	344(8	-37(236)	-2(2:3)	222(256)
C\%	$60370(94)$	2133(81)	--27(81)	750(30)	520(17)	623 (109)	162(135)	$39(2.5)$	-65(235)
c 3	65539(123)	876 (92)	-721: (003)	1443(!29	606(83)	870(93)	117 (216)	$519(: 35)$	-292(2i9)
C;	$64398(133)$	- 51	12i:9(118)	2164(223)	795	1052(103)	-342(325)	$861(:-6)$	20 (22)
cos	57932	-1 ces 3 (0s)		979 C	730(85)	1066 (163)	299(112)	-165(:-3)	39(227)
cs:	325:2(119)	-9914(:35)	(:7: 238	10721	729 (11	1503(129)	-1:9(245)	-231(-2)	$17\left(2{ }^{\text {(}}\right.$
ci	54:30312]	-38:9(95)	1:5(:14)	:050	600(9i)	1240(116)	-99(23)	-499(: 5)	$-199(155)$
oitional asd Therga! Parcete: $\times 10^{3}$									

- Pooitional asd neran: Parmeter: $\times 10^{3}$
calculated for the two with the best figure of merit. In those we found five well defined peaks which could be attributed to $\mathrm{Co}^{++}, \mathrm{Cl}^{-}$and P . At this stage we did not attempt to discriminate between chlorine and phosphorus. Structure factors were calculated for both and the solution that gave the smallest value of the agreement index R was chosen. The coordinates for the heavy atoms were in this way definitely established. Difference Fourier maps disclosed all the remaining atoms, except hydrogen. The coordinates of all atoms were then refined by the full matrix least squares refinement of $w\left(\left|F_{0}\right|-\left|F_{0}\right|\right)^{2}$ using the corresponding program included in the Enraf-Nonius Structure Determination Package (SDP) ${ }^{4}$ written for use on the PDP- 11 series of computers to an R value of 0.075 , when all shifts were smaller than three times their standard deviations.

As the positions of the hydrogen atoms were not revealed by a difference synthesis, their coordinates were generated from the positions of the atoms to which they are bonded by assuming tetrahedral and trigonal angles and $\mathrm{C}-\mathrm{H}$ distances of $1.0 \AA$. The full
matrix least squares refinement gave a final value of $\mathrm{R}=0.065$ taking w as constant up to the end of the refinement which was considered completed when all coordinate shifts were less than twice the corresponding standard deviations. The hydrogen positional and thermal parameters were not refined. An attempt was made towards improving the refinement using weights proportional to the standard deviation of measured F's ${ }^{4}$ and the pivot point scheme ${ }^{4}$ with no further improvement. In all calculations the atomic scattering factors were used taking into account the anomalous scattering coefficients. Their numerical values were taken from the Vol. 4 of the International Tables for X-ray Crystallography. ${ }^{8}$

Structural Data

Tables I and II give the final parameters of the atoms in the asymetric unit and their estimated standard deviations in parenthesis. The intramolecular distances and angles are given in Table III. Equation for the best plane of the phenyl rings was obtained by least squares fitting. Table IV gives the equations for

TABLE II
Hydrogen positional and thermal parameters of bis(tribenzylphosphine oxide)dichlorocobalt (II) and their standard deviations ${ }^{\text {a }}$

ATOM	X	Y	2	8		АTOM	χ	I	2		B	
H1	16630 (0) 6224 C	0) 36080 (0) 680000 (0)	H22	49744	0) 152446	0) -9500(0)	850000($0)$
H2	13150(0) $9425($	0) $27230($	0) $700000($	0)	H23	59545	0) 19513 (0) -9030(0)	650000(0
H3	18122	0) 24469 (0) $22601($	0) 850000	0)	H24	36571	0) 24468 (0)-10396	0)	650000 (0)
14	20857	0) $38338($	0) 265191	0) 8500	$0)$	H25	31239	0) $38359($	0)-13924 ($0)$	850000 (0)
H5	22699(0) $41242($	0) 406	0) 8500	0)	H26	41120(0) 49557	0)-16003 (0)	850000(0)
H6	24051	0) 29543 (0) 50363	0) 8500	$0)$	H27	5659	0) 47615 ($0)$	0)	850000(0)
E7	20323	0) 15786	0) 46063	0) 8500	$0)$	H28	61579	0) $33936($	0) -91	$0)$	850000 (0)
H8	27840	0) -7672	0) 31777	0) 690000	0)	829	53624	0) 31548	0)	0)	650000($0)$
H9	33084	0) -7450	0) 2312	0) 7200	0)	H30	63	0) 281	D) 669	0)	650000(0)
H10	10014	0)-1000	0) 31	0) 8500	0)	1231	$71582($	0)	0)	0)	850000 (0)
Ell	-1107	0)-15082	0) 24701	0) 8500	$0)$	H32	71	0)	0) 333)	850000 (0)
H12	351	0)-18593	0) 10203	0) 850000	0)	H33	59198	0) 234	0)	0)	850000 (0)
113	12541	0	0) 3333	0) 85000	0)	H34	4583	0) 286	0) 3	0)	35000	0)
114	25655	0) -9322	0) 102	0) 85000	0)	H35	44	0) 2896	0) 202	0)	85000	0)
H15	33941	0) 6978(0) 39	0) 690000	$0)$	H36	62	0) 7906	0) 109	0)	5000	$0)$
116	37626	0) 14452	0) 33	0) 720000	0)	H37	6787	0) 1186	0) 346	0)	5000	$0)$
\#17	45559	0) 264	0) 45402	0) 850000	0)	H38	70710	0) 525	0) -845	0)	850000	$0)$
日18	59747 (0) -5991	0) 45070	0) 850000 (0)	H39	687821	0) -5888	0)-17339	0)	850000	0)
119	$67301($	0) -7890 (0) $32483($	0) 850000 (0)	H40	570141	0) -15352	0)-15359	0)	850000	0)
日20	$61601($	0) -1268(0) 20847	0) 850000(0)	H41	474248	0)-14243	0) -3981	0)	850000 (0)
E21	47490 (0) 5330	0) $21224($	0) 850000 (0)	842	497208	0) -3158	0) $5662($	0)	850000 (0)
${ }^{*}$	tional	nd Thers	Pa	10^{5}								

TABLE III
Bis(tribenzylphosphine oxide)dichlorocobalt (II) intramolecular distances and angles

At. 1	At. 2	3	12	23	Angle	t. 1	t. 2	At. 3	12	d 23	
Cl1	Co	$\mathrm{Cl2}$	2.255 (3)	2.249 (3)	$113.0(1)$	C14	cs	C10	$1.420(12)$	1.322(13)	119.5(10)
Cl1	Co	01	2.255(3)	1.937 (7)	$110.6(2)$	P1	C45	C16	$1.824(11)$	$1.534(13)$	$116.917)$
Cl 1	Co	02	2.255 (3)	1.920 (6)	109.1(2)	C15	C18	C17	$4.534(13)$	1.384(12)	118.8(9)
Cl2	Co	01	2.249(3)	1.937 (7)	$109.6(2)$	615	C16	C21	$1.534(13)$	1.360 (13)	123.9(9)
C12	Co	02	2.249 (3)	$1.920(6)$	109.2(2)	C16	C17	C18	$1.384(12)$	1.357(14)	121.3(10)
01	Co	02	$1.937(7)$	1.920 (6)	104.9 (3)	C17	C18	C19	1.357(14)	$1.407(14)$	121.4(10)
Co	01	P1	1.937 (7)	$1.517(7)$	176.0(8)	C18	Cis	C20	$1.407(14)$	$1.351(13)$	117.1(10)
Co	02	P2	1.920 (6)	1.507 (7)	353.0(8)	C19	C20	C21	$1.351(13)$	$1.394(14)$	121.0(11)
01	P1	C1	$1.517(7)$	1.808(11)	113.6 (5)	c20	C21	C16	$1.360(13)$	$1.394(14)$	121.9(10)
01	P1	C8	$1.517(7)$	$1.819(12)$	109.4(5)	021	C16	C17	1.350 (13)	$1.384(12)$	$117.1(9)$
01	P1	C15	$1.517(7)$	1.824(11)	$114.5(5)$	P2	C22	C23	1.795 (9)	1.527(12)	$116.9(6)$
C1	P1	C8	1.808(11)	1.819(12)	$110.3(5)$	C22	C23	C24	1.527(12)	1.353(12)	123.8(9)
C1	P1	C15	1.808(11)	1.824(11)	102.0(5)	022	C23	C28	1.527(12)	1.383(11)	119.9 (8)
C8	P1	C15	1.819(12)	1.824(11)	105.5(5)	023	C24	[25	1.353(12)	1.361(12)	122.5(9)
02	P2	C22	1.505(7)	1.795 (3)	$113.3(3)$	024	C25	C26	1.361(12)	1.335(13)	120.1(9)
02	P2	C29	$1.505(7)$	1.748 (3)	$111.3(3)$	025	C26	C27	$1.335(13)$	1.395 (14)	118.4(10)
02	P2	C36	1.505(7)	1.756 (3)	109.3(3)	C26	C27	C28	$1.395(14)$	1.312(12)	120.5(10)
C22	P2	C29	1.795 (3)	1.748 (3)	$109.511)$	C27	C28	C23	1.312(12)	1.383(11)	122.1(9)
C22	P2	C36	$1.795(3)$	1.756 (3)	$104.9(1)$	C28	C23	C24	1.383(19)	9.353(12)	116.3(9)
029	P2	C36	1.748 (3)	$1.756(3)$	$108.2(2)$	2	C29	C30	$1.748(10)$	1.525(12)	117.1(7)
P1	C1	C2	1.808(11)	1.479(13)	$113.1(8)$	C29	C30	C31	1.525(12)	$1.348(13)$	124.8(11)
c1	C2	C3	1.479(13)	1.449(13)	124.2 (9)	C29	c30	C35	1.525(12)	1.440(14)	120.6(10)
C1	C2	C7	1.479(13)	1.356(13)	120.5(10)	C30	C31	C32	1.348(13)	1.405(15)	122.1(12)
C2	C3	C4	1.449(13)	1.345(15)	125.5(10)	C31	C32	C33	$1.405(15)$	1.356(18)	119.2(12)
c3	C4	C5	1.345(95)	1.353(16)	126.5(12)	C32	C33	C34	$1.355(18)$	1.308(17)	119.8(11)
CA	C5	C6	1.353(16)	$1.470(17)$	122.0(11)	C33	C34	C35	$1.308(17)$	1.321 (14)	122.4(14)
C5	C6	C7	1.47(17)	$1.370(15)$	116.9(10)	C34	C35	c30	$1.321(14)$	1.440(14)	121.8(12)
C6	C7	C2	1.370(15)	1.356(13)	$123.7(12)$	C35	C30	C31	1.440(14)	1.348 (13)	114.4 (9)
C7	C2	C3	1.356(13)	1.449(13)	$115.0(10)$	P2	c38	C37	1.756(9)	1.493(11)	115.8 (6)
P1	C8	C9	1.819112)	1.529(14)	112.6(8)	C36	C37	C38	1.493(11)	1.379(12)	122.4(9)
C8	C9	C10	9.529(14)	$1.322(13)$	122.3(5)	C36	C37	C42	1.493(11)	1.393(13)	122.5 (9)
C8	c9	C14	1.529(14)	$1.420(12)$	118.0(9)	C37	C38	C39	$1.379(12)$	1.310(14)	123.8(12)
c9	C10	C11	1.322 (13)	$1.432(14)$	121.5(10)	c38	C39	C40	$1.340(14)$	$1.345(17)$	119.1(13)
C10	C11	C12	$1.432(14)$	1.429(15)	118.7110)	C39	C40	C41	$1.345(17)$	1.319(17)	119.9(12)
C11	C12	C13	1.429(15)	$1.306(14)$	118.5(11)	C40	C41	C42	1.319(17)	1.331(14)	122.3(13)
C12	C13	C14	$1.306(14)$	1.424(14)	123.1(10)	C41	C42	C37	$1.331(14)$	1.393(13)	119.7(12)
$[13$	c14	c9	4.424(14)	1.420(12)	118.1(10)	C42	C37	c38	1.493(11)	$1.379(12)$	115.0(9)

the planes in the form $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are constants and x, y and z are orthogonalized coordinates. Also are given the standard deviations of each atom from the mean plane. Dihedral angles between planes are given in Table V.

DISCUSSION AND DESCRIPTION OF THE MOLECULAR AND CRYSTALLINE STRUCTURE

An ORTEP 5 representation of the molecular structure of bis(tribenzylphosphine oxide)dichlorocobalt (II) is shown in Figure 1. The cobalt is coordinated tetrahedrally by two chlorines and two oxygens. The chlorine and oxygen atoms are close-packed, as is indicated by the fact that their interatomic distances are equal to the sum of the van der Waals radii similar to the structure of bis(N -benzyldiphenyl-phosphonic amide) dichlorocobalt (II). ${ }^{6}$ The angles $\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 2$, $\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2, \mathrm{O} 1-\mathrm{Co}-\mathrm{Cl} 1, \mathrm{O} 1-\mathrm{Co}-\mathrm{Cl} 2, \mathrm{O} 2-\mathrm{Co}-\mathrm{Cl} 1$
and $\mathrm{O} 2-\mathrm{Co}-\mathrm{C} / 2$ are $113.01^{\circ}, 104.98^{\circ}, 110.60^{\circ}$, $109.81^{\circ}, 109.10^{\circ}$ and 109.21° respectively. The distortions in these angles from the tetrahedral value of $109^{\circ} 28^{\prime}$ are severer for the $\mathrm{Cl} 1-\mathrm{Co}-\mathrm{Cl} 2$ and $\mathrm{O} 1-\mathrm{Co}-$ O 2. The reason for these distortions are, as pointed out by Roy and Jefferey, ${ }^{5}$ the differences in the Co-O and $\mathrm{Co}-\mathrm{Cl}$ bond lengths and the differences in the van der Waals radii of chlorine and oxygen. Interatomic distances and angles in the phenyl rings are normal. As we can see from Table II, there is a good agreement between the values of the interatomic distances $\mathrm{Co}-\mathrm{Cl} 1$ and $\mathrm{Co}-\mathrm{C} 22, \mathrm{Co}-\mathrm{O} 1$ and $\mathrm{Co}-\mathrm{O} 2, \mathrm{O} 1-\mathrm{P} 1$ and $\mathrm{O} 2-\mathrm{P} 2$ respectively within a value not larger than twice the standard deviations. There is good agreement of these bond length values and similar bond distances determined in the structure of bis(N -benzyldiphenylphosphonic amide)dichlorocobalt (H$)^{6}$ and of bis(trimethylphosphine oxide) dichlorocobalt (II). ${ }^{7}$

The crystal packing consists of an arrangement of

TABLE IV
Least square planes

```
The equations of planes are expressed
in orthogonalized space as Ax+By+Cz+D=0
Plane 1 0.9821x-0.1094y-0.1532z-1.7062=0
```



```
c2 -0.036 c5 0.006 c) c> -0.028
c3-0.001
P1&ne 2 -0.3394x+0.9251y-0.1700z-2.9229-0
c8
c9 -0.008 c12-0.015 cl4 -0.017
c10\quad0.003
Plane 3 0.4668x+0.8595y+0.2081z+4.8591=0
c15 0.019 c18 0.019 c20 0.020
c16 0.017 c19 0.021 c21 0.020
cl7 0.018
Plane 4 0.1496x-0.2316y-0.9612z+1.5678=0
c22 -0.006 c25 0.000 c27
c23
c24 -0.003
PIane 5 0.2914x+0.9543y+0.0657z+6.6754=0
c29
```



```
c31-0.001
P1ane 6 -0.6194x+0.5603y-0.5499z-5.4039-0
c36
c37 -0.038 c40 0.003 c42 -0.055
c38 -0.009
```

TABLE V
Dihedral angles between planes

PLANE	PLANE	DIHEDRAL
N0.	NO.	ANGLE
1	2	-65.9
1	3	- 70.6
1	4	71.4
1	5	-80.1
1	6	-54.2
2	3	-53.0
2	4	-84.2
2	5	-39.4
2	6	34.7
3	4	70.8
3	5	14.1
3	6	-85.5
4	5	76.1
4	6	72.2
5	6	-71.5

discrete molecules of the title compound. This is illustrated in the ORTEP ${ }^{5}$ stereo view shown in Figure 2.

ACKNOWLEDGEMENT

We are grateful to A. C. Massabni, who did the original synthesis and infrared studies of this complex, for suggesting the problem and for valuable discussions.

FIGURE 1 The molecular structure of bis(tribenzylphosphine oxide)dichlorocobalt(II).

FIGURE 2 Stereo view of the molecular packing of bis(tribenzylphosphine oxide)dichlorocobalt(II)

REFERENCES

1. A. C. Massabni and O. A. Serra, J. Coord, Chem, 7, Vol. 2, 67 (1977).
2. R. Shiono, Technical Report No. 49, Department of Crystallography, University of Pittsburgh.
3. G. Germain, P. Main and M. M. Woolfson, Acta Cryst., A27, 368-376 (1971).
4. Enraf Nonius Structure Determination Package, Enraf Nonius, Delft, Holland.
5. C. K. Johnson, ORTEP, Oak Ridge National Laboratory, Report ORNL-3794.
6. R. M. Roy and J. W. Jefferey, Acta Cryst., B29, 2083 (1973).
7. F. A. Cotton and R. H. Sodeberg, J. Am. Chem. Soc., 85, 2402 (1963).
8. International Tables for X-ray Crystallography, 4, The Kinoch Press, Birmingham, England, 1974, Tables 2.2B and 2.3.1.
